Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the standard deviation for the following data:
$x_{i}$ 4 8 11 17 20 24 32
$f_{i}$ 3 5 9 5 4 3 1

Statistics

Solution:

$x_{i}$ $f_{i}$ $f_{i}x_{i}$ $(x_{i}- \bar{x})$ $(x_{i}-\bar{x})^{2}$ $f_{i}(x_{i}-\bar{x})^{2}$
4 3 12 -10 100 300
8 5 40 -6 36 180
11 9 99 -3 9 81
17 5 85 3 9 45
20 4 80 6 36 144
24 3 72 10 100 300
32 1 32 18 324 324
Total 30 420 1374

$N=30, \displaystyle\sum_{i=1}^{7} f_{i} x_{i}=420$,
$ \displaystyle\sum_{i=1}^{7} f_{i}\left(x_{i}-\bar{x}\right)^{2}=1374$
Therefore, $\bar{x}=\frac{\displaystyle\sum_{i=1}^{7} f_{i} x_{i}}{N}=\frac{1}{30} \times 420=14$
Hence, variance $\left(\sigma^{2}\right)$
$=\frac{1}{N} \displaystyle\sum_{i=1}^{7} f_{i}\left(x_{i}-\bar{x}\right)^{2}$
$=\frac{1}{30} \times 1374=45.8$
and Standard deviation $(\sigma)=\sqrt{45.8}=6.77$