Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the ratio of moments of inertia of the two disks of same mass and thickness but one of density $7.2g/cm^{3}$ and the other of density $8.9g/cm^{3}$ .

NTA AbhyasNTA Abhyas 2020

Solution:

We know that moment of inertia $I=\frac{MR^{2}}{2}$
(of disk wrt principle axis)
Given $M_{1}=M_{2}$
$V_{1}d_{1}=V_{2}d_{2}$
$\pi R_{1}^{2}t_{1}d_{1}=\pi R_{2}^{2}t_{2}d_{2}...\left(\right.i\left.\right)$
Given $t_{1}=t_{2}$ $\left(\right.$ thickness $\left.$
So $\frac{R_{1}^{2}}{R_{2}^{2}}=\frac{d_{2}}{d_{1}}\left(\right.fromeq.\left(\right.i\left.\right)\left.\right)$
So $\frac{M_{1} R_{1}^{2}}{M_{2} R_{2}^{2}}=\frac{d_{2}}{d_{1}}\left(\right.asM_{1}=M_{2}\left.\right)$
$\Rightarrow \frac{I_{1}}{I_{2}}=\frac{d_{2}}{d_{1}}$
$\Rightarrow \frac{I_{1}}{I_{2}}=\frac{8 . 9}{7 . 2}$