Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the ratio of de Broglie wavelength of molecules of hydrogen and helium which are at temperatures $27^{\circ} C$ and $327^{\circ} C$, respectively.

Dual Nature of Radiation and Matter

Solution:

Average K.E. per molecule of a gas at the given temperature $(T)$ is given as,
$\frac{1}{2} m v^{2}=\frac{3}{2} k T$
where, $m=$ molecular mass of the gas
$\therefore mv =\sqrt{3 mkT }$
But, $ \lambda=\frac{ h }{ mv }=\frac{ h }{\sqrt{3 mkT }} $
$\therefore \frac{\lambda_{ H }}{\lambda_{ He }} =\sqrt{\frac{ m _{ He } T _{ He }}{ m _{ H } T _{ H }}}$
$=\sqrt{\frac{(4)(273+327)}{(2)(273+27)}}=\sqrt{4}=2$