Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the rate law that corresponds to the data shown for the following reaction?
Experiment $\left[\right. A \left]\right._{0}=M$ $\left[\right.B\left]\right._{0}=M$ Initial rate
1 $0.012$ $0.035$ $0.10$
2 $0.024$ $0.070$ $0.80$
3 $0.024$ $0.035$ $0.10$
4 $0.012$ $0.070$ $0.80$

NTA AbhyasNTA Abhyas 2022

Solution:

$\frac{\text{ Expt. } 4}{\text{ Expt. } 1}=\frac{\left[\right. 0 . 012 \left]\right.^{x} \left[\right. 0 . 070 \left]\right.^{y}}{\left[\right. 0 . 012 \left]\right.^{x} \left[\right. 0 . 035 \left]\right.^{y}}=\frac{0 . 80}{0 . 10}$
$2^{y}=8\therefore y=3$
$\frac{\text{ Expt. } 3}{\text{ Expt. } 1}=\frac{\left[\right. 0 . 024 \left]\right.^{x} \left[\right. 0 . 035 \left]\right.^{3}}{\left[\right. 0 . 012 \left]\right.^{x} \left[\right. 0 . 035 \left]\right.^{3}}=\frac{0 . 10}{0 . 10}$
$2^{x}=1x=0$
Rate $=k\left[\right.A\left]\right.^{0}\left[\right.B\left]\right.^{3}$ .