Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the principal value $tan^{-1} \, \left(\sqrt{3}\right)$

Inverse Trigonometric Functions

Solution:

Let $tan^{-1} \left(\sqrt{3}\right) = \theta$
$\Rightarrow tan\,\theta = \sqrt{3}$
$= tan \frac{\pi}{3}$
$\Rightarrow \theta = \frac{\pi }{3} \in \left(\frac{-\pi }{2}, \frac{\pi}{2}\right) $
$\therefore $ Principal value of $tan^{-1} \left(\sqrt{3}\right)$ is $\frac{\pi}{3}$