Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the principal value $sin^{-1} \left(\frac{1}{\sqrt{2}}\right)$

Inverse Trigonometric Functions

Solution:

Let $sin^{-1} \left(\frac{1}{\sqrt{2}}\right) = \theta$
$\Rightarrow sin\,\theta = \frac{1}{\sqrt{2}}$
$= sin \frac{\pi}{4}$
$\Rightarrow \theta = \frac{\pi }{4} \in \left[\frac{-\pi }{2}, \frac{\pi }{2}\right] $
$\therefore $ Principal value of $sin^{-1} \left(\frac{1}{\sqrt{2}}\right)$ is $\frac{\pi }{4}$