Thank you for reporting, we will resolve it shortly
Q.
Find the period of the function satisfying the relation $f\left(x\right)+f\left(x + 3\right)=0\forall x\in R.$
NTA AbhyasNTA Abhyas 2022
Solution:
Given $f\left(x\right)+f\left(x + 3\right)=0$
Replace $x$ by $x+3$
Therefore, $f\left(x + 3\right)+f\left(x + 6\right)=0$
From $\left(1\right)$ and $\left(2\right)$ ,
$f\left(x\right)=f\left(x + 6\right)$
Hence, the function has period $6$