Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the missing values where median and mode of the following distribution is given 33.5 and 34 , respectively, choose which of the following is a correct pair.
Class Internal Frequency
0-10 4
10-20 16
20-30 ?
30-40 ?
40-50 ?
50-60 6
60-70 4
Column - I Column - II
I $I^{\text {st }}$ frequency P 50
II II $^{\text {nd }}$ frequency Q 68
III III $^{\text {rd }}$ frequency R 70
S 40
T 100

Statistics

Solution:

Let missing frequency $(20-30)=x$
Missing frequency $(30-40)=y$
And missing frequency $(40-50)=230-(4+$ $16+(x+y+6+4)$ $=200-x-y$
image
$\text { Median }=l_1+\frac{\frac{N}{2}-f_0}{f} \times(l_2-l_1) $
$ 33.5=30+\frac{115-(20+x)}{y} \times(40-30) $
$y(33.5-30)=(11.5-20-x) 10 $
$ 3.5 y=1150-200-10 x $
$ 10 x+3.5 y=950 $
$ \text { Mode }=l_1+\frac{f_1-f_0}{2 f_1-f_0-f_2} \times(l_2-l_1)$
$34=20+\frac{y-x}{2 y-2(-200-x-y)} \times(30-20) $
$4(3 y-200)=10(y-x)$
$10 x+2 y=800$
Subtracting equation (ii) from equation (i), we get
$1.5 y=150 $
$\Rightarrow y=100$
Equality value of $y$ in eq(l), we get
$10 x+3.5(100)=950 $
$10 x=950-350 $
$\Rightarrow x=60$
So, third frequency $=200-x-y=200-60$ $-100=40$