Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the mean and standard deviation for the following data :
$x_i$ 6 10 14 18 24 28 30
$f_i$ 2 4 7 12 8 4 3

Statistics

Solution:

Calculation for Mean and Standard Deviation
$x_i$ $f_i$ $f_i x_i$ $f_i x_i^2$
6 2 12 72
10 4 40 400
14 7 98 1372
18 12 216 3888
24 8 192 4608
28 4 112 3136
30 3 90 2700
130 $\sum f_i = 40$ $\sum f_i x_i = 760$ $\sum f_i x_i^2 = 16176$

Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{760}{40}=19$
S.D. $=\sqrt{\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}}$
$=\sqrt{\frac{16176}{40}-\left(\frac{760}{40}\right)^{2}} $
$=\sqrt{404.4-361}=\sqrt{43.4}=6.59 .$
Hence, Mean $=19, \text { S.D. }=6.59 . $