Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the first derivative of the function $\left[\cos ^{-1}\left(\sin \sqrt{\frac{1+x}{2}}\right)+x^{x}\right]$ with respect to $x$ at $x=1$.

Continuity and Differentiability

Solution:

$y =\frac{\pi}{2}-\sin ^{-1} \sin \sqrt{\frac{1+x}{2}}+x^{x}$
$=\frac{\pi}{2}-\sqrt{\frac{1+x}{2}}+x^{x}$
$\frac{d y}{d x}=0-\frac{1 \times(1 / 2)}{2 \sqrt{\frac{1+x}{2}}}+x^{x}(1+\log x)$
at $x =1$
$=-\frac{1}{4}+1=3 / 4$