Q.
Find the equation of the lines for which $tan\,\theta=\frac{1}{2}$, where $\theta$ is the inclination of the line and $\left(i\right) y$-intercept is $-\frac{3}{2} \left(ii\right) x$-intercept is $4$.
$(i)\quad$
$(ii)$
(a)$\quad$
$y - 2x + 3 = 0$$\quad$
$2y - x + 4 = 0$$\quad$
(b)$\quad$
$2y - x + 3 = 0\quad$
$2y - x + 4 = 0\quad$
(c)$\quad$
$2y - x + 3 = 0\quad$
$y - 2x + 4 = 0\quad$
(d)$\quad$
$y - 2x + 3 = 0$
$y - 2x + 4 = 0$
$(i)\quad$ | $(ii)$ | |
---|---|---|
(a)$\quad$ | $y - 2x + 3 = 0$$\quad$ | $2y - x + 4 = 0$$\quad$ |
(b)$\quad$ | $2y - x + 3 = 0\quad$ | $2y - x + 4 = 0\quad$ |
(c)$\quad$ | $2y - x + 3 = 0\quad$ | $y - 2x + 4 = 0\quad$ |
(d)$\quad$ | $y - 2x + 3 = 0$ | $y - 2x + 4 = 0$ |
Straight Lines
Solution: