Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the energy equivalent of one atomic mass unit in joules and in $MeV$.

COMEDKCOMEDK 2014Nuclei

Solution:

Here, $m = 1 \, u = 1.6605 \times 10^{-27} \, kg$
According to Einstein's mass-energy equivalence relation
$E = mc^2$
$ \, \, \, = (1.6605 \times 10^{-27} \, kg)(2.9979 \times 10^8 \, m \, s^{-1})^2$
$= 1.4924 \times 10^{-10} J = 1.5 \times 10^{-10} J$
$ E = \frac{ 1.4924 \times 10^{-10}}{1.602 \times 10^{-19}} eV$
$= 0.9315 \times 10^9 eV = 931.5 \times 10^6 \: eV = 931.5\: MeV$