Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Find the combined standard deviation of two groups X and Y from the data gives below: <img class=img-fluid question-image alt=image src=https://cdn.tardigrade.in/img/question/mathematics/60e245410b437a88f49ca877945fa360-.png />
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Find the combined standard deviation of two groups $X$ and $Y$ from the data gives below:
Statistics
A
5
B
5.8
C
5.2
D
6
Solution:
Combined standard deviation $X$ and $Y$ is: $\sigma_{x y}=\sqrt{\frac{N_x \sigma_x^2+N_y \sigma_y^2+N_x d_x^2+N_y d_y^2}{N_x+N_y}} $ $N _{ x }=10, N _{ y }=10, \overline{X_x}=15, \overline{X_y}=20, \sigma_x=4,$ and $\sigma_y=5$ $\overline{X_{x y}}=\frac{\overline{X_x} N_x+\overline{X_y} N_y}{N_x+N_y} $ $\text { Or } \overline{X_{x y}}=\frac{(15 \times 10)+(20 \times 15)}{10+15}=\frac{150+300}{25} $ $=\frac{450}{25}=18 $ $d _x=(\overline{X_{x y}}-\overline{X_x})=18-15=3 $ $d _y=(\overline{X_{x y}}-\overline{X_y})=18-20=-2$ On substituting all the values in the formula for combined standard deviation, we get. $\sigma_{x y}= \sqrt{\frac{10(4)^2+15(5)^2+10(18-15)^2+15(18-20)^2}{10+15}} $ $ =\sqrt{\frac{(10 \times 16)+(15 \times 25)+(10 \times 9)+(15 \times 4)}{25}} $ $ =\sqrt{\frac{160+375+90+60}{25}} $ $ =\sqrt{\frac{68.5}{25}}=5.2 \text { (approximately) }$