Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the average energy density(in SI unit) of The electric field of a plane electromagnetic wave varies with time of amplitude $2 \, V m^{- 1}$ propagating along $z$ -axis.

NTA AbhyasNTA Abhyas 2022

Solution:

Amplitude of electric field and magnetic field are related by the relation
$\frac{E_{0}}{B_{0}}=c$
Average energy density of the magnetic field is
$u_{B}=\frac{1}{4}\frac{B_{0}^{2}}{\left(\mu \right)_{0}}=\frac{1}{4}\frac{E_{0}^{2}}{\left(\mu \right)_{0} c^{2}} \, \, \, \left(\because \, B_{0} = \frac{E_{0}}{c}\right)$
$=\frac{1}{4}\left(\epsilon \right)_{0}E_{0}^{2} \, \left(\because \, c = \frac{1}{\sqrt{\left(\mu \right)_{0} \left(\epsilon \right)_{0}}}\right)$
$=\frac{1}{4}\times 8.854\times \left(10\right)^{- 12}\times \left(2\right)^{2}=8.854\times \left(10\right)^{- 12} \, J \, m^{- 3}$
$\approx8.86\times 10^{- 12} \, J \, m^{- 3}$