Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the area of the pentagon whose vertices taken in order are (0, 4), (3, 0), (6, 1), (7, 5) and (4, 9).

Straight Lines

Solution:

image
$A _1=\frac{1}{2}\begin{vmatrix}0 & 4 & 1 \\ 3 & 0 & 1 \\ 4 & 9 & 1\end{vmatrix}=\frac{1}{2}|-4(-1)+1(27)|=\frac{31}{2}$
$A _2=\frac{1}{2}\begin{vmatrix}3 & 0 & 1 \\ 4 & 9 & 1 \\ 6 & 1 & 1\end{vmatrix}=\frac{1}{2}|3 \cdot(9-1)+1 \cdot(4-54)|=\frac{1}{2}|24-50|=13$
$ A _3=\frac{1}{2}\begin{vmatrix}4 & 9 & 1 \\ 7 & 5 & 1 \\ 6 & 1 & 1\end{vmatrix}=\frac{1}{2}|4 \times 4-9(1)+1(7-30)| $
$ =\frac{1}{2}|16-9-23|=\frac{16}{2}=8 $
$ \therefore \quad \text { Area of pentagon }=\frac{31}{2}+13+8=\frac{73}{2}=36.5 \text { sq. units }$