Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the area (in sq. units) of the largest rectangle with lower base on the x-axis \& upper vertices on thecurve $\mathrm{y}=12-\mathrm{x}^{2}$.

Application of Derivatives

Solution:

$ A=2 x y $
$f^{\prime}(x)=A(2 x)\left(12-x^2\right)$
$f^{\prime}(x)=2\left[12-3 x^2\right] $
$ x=2 $
$f^{\prime \prime}(x)=2[-6]=\max$
$y=12-4=8$
$\text { Area }=2 \times 8 \times 2=32 \text { sq. units }$

Solution Image