Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find the amount of work done to increase the temperature of one mole of an ideal gas by $30^{\circ} C$, if it is expanding under condition $V \propto T^{2 / 3}$. $R$ is gas constant

Thermodynamics

Solution:

Idea gas equation $P V=n R T$
For one mole of ideal gas $P V=R T$
$\Rightarrow P=\frac{R T}{V}$
Given that $V \propto T^{2 / 3}$ or $V=k T^{2 / 3}$ ...(i)
Differentiating equation (i),
$d V=k \frac{2}{3} T^{-1 / 3} d T$ ...(ii)
Work done $d W=P d V=\left(\frac{R T}{V}\right) \cdot k \frac{2}{3} T^{-1 / 3} d T$
$d W=\frac{R T}{k T^{2 / 3}} \cdot k \cdot \frac{2}{3} T^{-1 / 3} d T=\frac{2}{3} R d T$ ...(iii)
Integrating equation (iii)
$W=\int d W=\frac{2}{3} \int\limits_{T_{1}}^{T_{2}} d T=\frac{2}{3} R\left(T_{2}-T_{1}\right)=\frac{2}{3} R \Delta T$
Total work done,
$W=\frac{2}{3} \times R \times 30=20 \,R$