Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find $ \frac{dy}{dx}, $ if $ y={{\sin }^{2}}x+{{\cos }^{4}}x $

J & K CETJ & K CET 2014Limits and Derivatives

Solution:

We have $ y={{\sin }^{2}}x+{{\cos }^{4}}x $
$ \therefore $ $ \frac{dy}{dx}=2\sin x\operatorname{cosx}+4co{{s}^{3}}x(-\sin \,x) $
$=\sin 2x-4\sin x\cos x({{\cos }^{2}}x) $
$=\sin 2x-2\sin 2x\left( \frac{\cos 2x+1}{2} \right) $
$=\sin 2x-sin\,2x\,\cos \,2x-\,\sin \,2x $
$=-\sin 2x\,\cos \,2x=\frac{-\sin \,4x}{2} $