Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Find a unit vector perpendicular to both the vectors
$(2 \hat{ i }+3 \hat{ j }+\hat{ k })$ and $(\hat{ i }-\hat{ j }+2 \hat{ k })$

Motion in a Plane

Solution:

Let $\overrightarrow{ A }=2 \hat{ i }+3 \hat{ j }+\hat{ k }$ and
$\overrightarrow{ B }=\hat{ i }-\hat{ j }+2 \hat{ k }$ unit vector
perpendicular to both $\overrightarrow{ A }$ and
$\overrightarrow{ B }$ is $n =\frac{\overrightarrow{ A } \times \overrightarrow{ B }}{|\overrightarrow{ A } \times \overrightarrow{ B }|}$
$\overrightarrow{ A } \times \overrightarrow{ B }=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\ 2&3&1\\ 1&-1&2\end{vmatrix}$
$=\hat{ i }(6+1)-\hat{ j }(4-1)+\hat{ k }(-2-3)$
$=7 \hat{ i }-3 \hat{ j }-5 \hat{ k }$
$\therefore |\overrightarrow{ A } \times \overrightarrow{ B }|=\sqrt{7^{2}+(-3)^{2}+(-5)^{2}}$
$=\sqrt{83} unit$
$\therefore \hat{ n }=\frac{1}{\sqrt{83}}$
$(7 \hat{ i }-3 \hat{ j }-5 \hat{ k })$