Q.
Fill in the blanks.
(i) The value of $c$ in $LMVT$ for the function $f \left(x\right)=2x^{3}-5x^{2}-4x+3$, $x \in\left[\frac{1}{3}, 3\right]$ is P.
(ii) The value of $c$ in Rolle's theorem for the function $f(x) = (x - 2) (x - 3)$ in $[2, 3]$ is Q.
(iii) The value of $c$ in Rolle's theorem for the function $f(x) = x^2 - 5x + 9$, $x \in [1,4]$ is R.
(iv) The value of $c$ in $LMVT$ for the function $f(x) = 6x^2 - x^3$, $x \in [0,6]$ is S.
P
Q
R
S
(a)
$1.5\,\,\,$
$3/2\,\,\,$
$5/2\,\,\,$
$4$
(b)
$1.9\,$
$5/2\,$
$3/2\,$
$2$
(c)
$1.5\,$
$2\,$
$1\,$
$2$
(d)
$1.9\,$
$5/2\,$
$5/2\,$
$4$
P | Q | R | S | |
---|---|---|---|---|
(a) | $1.5\,\,\,$ | $3/2\,\,\,$ | $5/2\,\,\,$ | $4$ |
(b) | $1.9\,$ | $5/2\,$ | $3/2\,$ | $2$ |
(c) | $1.5\,$ | $2\,$ | $1\,$ | $2$ |
(d) | $1.9\,$ | $5/2\,$ | $5/2\,$ | $4$ |
Continuity and Differentiability
Solution: