Q.
Fill in the blanks.
(i) The number of solutions of the equation
$2sin^{-1}\left(\sqrt{x^{2}-x+1}\right)+cos^{-1}\left(\sqrt{x^{2}-x}\right) = \frac{3\pi}{2}$ is P.
(ii) The number of real roots of
$tan^{-1}\left(x+\frac{2}{x}\right)-tan^{-1} \frac{4}{x}-tan^{-1}\left(x-\frac{2}{x}\right) = 0$ is Q.
(iii) If $cos\left(tan^{-1}\,x+cot^{-1}\,\sqrt{3}\right) = 0$, then value of $x$ is R.
(iv) The number of solutions of
$sin[2 \,cos^{-1} \{cot(2\, tan^{-1} \,x\}] = 0$ is S.
P
Q
R
S
(a)
3
2
$3\sqrt{2}$
6
(b)
2
2
$\sqrt{3}$
6
(c)
2
1
$2\sqrt{3}$
4
(d)
3
1
$\sqrt{2}$
4
P | Q | R | S | |
---|---|---|---|---|
(a) | 3 | 2 | $3\sqrt{2}$ | 6 |
(b) | 2 | 2 | $\sqrt{3}$ | 6 |
(c) | 2 | 1 | $2\sqrt{3}$ | 4 |
(d) | 3 | 1 | $\sqrt{2}$ | 4 |
Inverse Trigonometric Functions
Solution: