Q.
Fill in the blanks.
(i) The length of the latus rectum of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ is P.
(ii) The equations of the hyperbola with vertices $\left(\pm 2, 0\right)$, foci $ \left(\pm3, 0\right)$ is Q.
(iii) If the distance between the foci of a hyperbola is $16$ and its eccentricity is $2$, then equation of the hyperbola is R.
P
Q
R
(a)
$\frac{9}{2}$
$\frac{y^{2}}{4}-\frac{x^{2}}{5}=1$
$x^{2}-3y^{2}=48$
(b)
$\frac{3}{2}$
$\frac{y^{2}}{4}-\frac{x^{2}}{5}=1$
$3x^{2}-y^{2}=48$
(c)
$\frac{9}{2}$
$\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
$3x^{2}-y^{2}=48$
(d)
$\frac{9}{2}$
$\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$
$x^{2}-y^{2}=48$
P | Q | R | |
---|---|---|---|
(a) | $\frac{9}{2}$ | $\frac{y^{2}}{4}-\frac{x^{2}}{5}=1$ | $x^{2}-3y^{2}=48$ |
(b) | $\frac{3}{2}$ | $\frac{y^{2}}{4}-\frac{x^{2}}{5}=1$ | $3x^{2}-y^{2}=48$ |
(c) | $\frac{9}{2}$ | $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ | $3x^{2}-y^{2}=48$ |
(d) | $\frac{9}{2}$ | $\frac{x^{2}}{4}-\frac{y^{2}}{5}=1$ | $x^{2}-y^{2}=48$ |
Conic Sections
Solution: