Q.
Fill in the blanks.
(i) The curves $y = 4x^2 + 2x - 8$ and $y = x^3 - x + 10$ touch each other at the point P.
(ii) The values of a for which the function $f(x) = sinx - ax + b$ increases on $R$ are Q.
(iii) The least value of the function $f(x) = ax + \frac{b}{x}(a > 0, b > 0, x > 0)$ is R.
(iv) The equation of normal to the curve $y = tanx$ at $(0,0)$ is S.
P
Q
R
S
(a)
$\left(-\frac{1}{3}, - \frac{74}{9}\right)\,\,\,\,$
$\left(-\infty, 1\right)\,\,\,\,$
$\sqrt{ab}\,\,\,\,$
$y - 2x = 0$
(b)
$(3, 34)\,\,\,\,$
$\left(-\infty, 1\right)\,\,\,\,$
$2\sqrt{ab}\,\,\,\,$
$y + x = 0$
(c)
$(3, 34)\,\,\,\,$
$\left(-\infty, -1\right)\,\,\,\,$
$\sqrt{ab}\,\,\,\,$
$y = 0$
(d)
$\left(-\frac{1}{3}, - \frac{74}{9}\right)\,\,\,\,$
$\left(-\infty, 1\right)\,\,\,\,$
$2\sqrt{ab}\,\,\,\,$
$y - 2x = 0$
P | Q | R | S | |
---|---|---|---|---|
(a) | $\left(-\frac{1}{3}, - \frac{74}{9}\right)\,\,\,\,$ | $\left(-\infty, 1\right)\,\,\,\,$ | $\sqrt{ab}\,\,\,\,$ | $y - 2x = 0$ |
(b) | $(3, 34)\,\,\,\,$ | $\left(-\infty, 1\right)\,\,\,\,$ | $2\sqrt{ab}\,\,\,\,$ | $y + x = 0$ |
(c) | $(3, 34)\,\,\,\,$ | $\left(-\infty, -1\right)\,\,\,\,$ | $\sqrt{ab}\,\,\,\,$ | $y = 0$ |
(d) | $\left(-\frac{1}{3}, - \frac{74}{9}\right)\,\,\,\,$ | $\left(-\infty, 1\right)\,\,\,\,$ | $2\sqrt{ab}\,\,\,\,$ | $y - 2x = 0$ |
Application of Derivatives
Solution: