Q.
Fill in the blanks.
$(i)$ Let $f$ : $R \to R$ such that $f\{x-f(y)\} =f\{(y)\} + xf(y) +f(x) - 1 \,\forall x$, $y \in R$. Then the value of $|\{f(16)\}|$ is P.
$(ii)$ If $f= \{(1$, $2)$, $(3$, $5)$, $(4$, $1)\}$ and $g= \{(2$, $3)$, $(5$, $1)$, $(1$, $3)\}$, then $gof=$ Q .
$(iii)$ If $f$ : $R \to R$ be defined by $f \left(x\right)=\frac{x}{\sqrt{1+x^{2}}}$, then $(fofof)(x) =$ R .
P
Q
R
$(a)$
$126$
$(1$, $2)$, $(2$, $1)$, $(1$, $3)$
$\frac{x}{\sqrt{x^{2}+3}}$
$(b)$
$128$
$(1$, $4)$, $(3$, $1)$, $(4$, $3)$
$\frac{1}{\sqrt{3x^{2}+1}}$
$(c)$
$125$
$(-2$, $5)$, $(5$, $2)$, $(1$, $5)$
$\frac{x^{2}}{\sqrt{x^{2}+3}}$
$(d)$
$127$
$(1$, $3)$, $(3$, $1)$, $(4$, $3)$
$\frac{x}{\sqrt{3x^{2}+1}}$
P | Q | R | |
---|---|---|---|
$(a)$ | $126$ | $(1$, $2)$, $(2$, $1)$, $(1$, $3)$ | $\frac{x}{\sqrt{x^{2}+3}}$ |
$(b)$ | $128$ | $(1$, $4)$, $(3$, $1)$, $(4$, $3)$ | $\frac{1}{\sqrt{3x^{2}+1}}$ |
$(c)$ | $125$ | $(-2$, $5)$, $(5$, $2)$, $(1$, $5)$ | $\frac{x^{2}}{\sqrt{x^{2}+3}}$ |
$(d)$ | $127$ | $(1$, $3)$, $(3$, $1)$, $(4$, $3)$ | $\frac{x}{\sqrt{3x^{2}+1}}$ |
Relations and Functions - Part 2
Solution: