Q.
Fill in the blanks.
$\left(i\right) \int\frac{ x+3 }{\left(x+4\right)^{2}} e^{x} dx = P$.
$\left(ii\right)$ The value of $\int \limits^{\pi}_{-\pi} sin^{3} \,x \,cos^{2} x\, dx$ is $Q$.
$\left(iii\right) \int \limits_{0}^{\frac{\pi}{2}} cos\, x\, e^{ sin \,x} dx$ is equal to $R$ .
$\left(iv\right) \int\frac{sin \,x}{3+ 4\, cos^{2}x } dx = S$.
P$ \quad$
Q $ \quad$
R $ \quad$
S$ \quad$
(a) $ \quad$
$\left(\frac{e^{x}}{x+4}\right) + C $
$0$
$e-1$
$\frac{-1}{2\sqrt{3}} tan^{-1} \left(\frac{2\,cos x}{\sqrt{3}}\right) + C$
(b)
$\frac{e^{x }}{\left(x+4\right)} +C$
$1$
$e-1$
$\frac{1}{\sqrt{3}} tan^{-1} \left(\frac{2\,cos\, x}{\sqrt{3}}\right) + C$
(c)
$\frac{e^{x }}{\left(x+4\right)^{2}} + C$
$0$
$e+1$
$\frac{-1}{2\sqrt{3}} tan^{-1} \left(\frac{2\,sin\, x}{\sqrt{3}}\right) + C$
(d)
$\frac{e^{x }+1}{\left(x+4\right)} +C$
$1$
$e+1$
$\frac{1}{\sqrt{3}} tan^{-1} \left(\frac{2\,sin\, x}{\sqrt{3}}\right) + C$
P$ \quad$ | Q $ \quad$ | R $ \quad$ | S$ \quad$ | |
---|---|---|---|---|
(a) $ \quad$ | $\left(\frac{e^{x}}{x+4}\right) + C $ | $0$ | $e-1$ | $\frac{-1}{2\sqrt{3}} tan^{-1} \left(\frac{2\,cos x}{\sqrt{3}}\right) + C$ |
(b) | $\frac{e^{x }}{\left(x+4\right)} +C$ | $1$ | $e-1$ | $\frac{1}{\sqrt{3}} tan^{-1} \left(\frac{2\,cos\, x}{\sqrt{3}}\right) + C$ |
(c) | $\frac{e^{x }}{\left(x+4\right)^{2}} + C$ | $0$ | $e+1$ | $\frac{-1}{2\sqrt{3}} tan^{-1} \left(\frac{2\,sin\, x}{\sqrt{3}}\right) + C$ |
(d) | $\frac{e^{x }+1}{\left(x+4\right)} +C$ | $1$ | $e+1$ | $\frac{1}{\sqrt{3}} tan^{-1} \left(\frac{2\,sin\, x}{\sqrt{3}}\right) + C$ |
Integrals
Solution: