Q.
Fill in the blanks
$ (i)$ In a $LPP$, the objective function is always P
$(ii)$ The feasible region for a $LPP$ is always a Q polygon.
$(iii)$ A feasible region of a system of linear inequalities is said to be R, if it can be enclosed within a circle.
$(iv)$ In a $LPP$, if the objective function $Z = ax + by$
has the same maximum value on two corner points of the feasible region, then every point on the line segment joining these two points give the same S value.
P$ \qquad$
Q $ \qquad$
R $ \qquad$
S $ \qquad$
(a) $ \quad$
non-linear$ \quad$
convex $ \quad$
unbounded$ \quad$
minimum $ \quad$
(b)
parabolic
convex
unbounded
maximum
(c)
linear
concave
bounded
minimum
(d)
linear
convex
bounded
maximum
P$ \qquad$ | Q $ \qquad$ | R $ \qquad$ | S $ \qquad$ | |
---|---|---|---|---|
(a) $ \quad$ | non-linear$ \quad$ | convex $ \quad$ | unbounded$ \quad$ | minimum $ \quad$ |
(b) | parabolic | convex | unbounded | maximum |
(c) | linear | concave | bounded | minimum |
(d) | linear | convex | bounded | maximum |
Linear Programming
Solution: