Q.
Fill in the blanks.
(i) Area of the region enclosed by the curve $y = tan\, x$, the $x$-axis and the line $x=\frac{\pi}{3}$ is P.
(ii) The area under the curve $y=\sqrt{x} $ from $x=0$ to $x=4$ is Q.
(iii) Area enclosed between the $y$-axis, graph of $x=\sqrt{y} $ and the line $y = 4$ is R.
(iv) The area bounded by the axes and the line $y=x+1$ is S.
P
Q
R
S
(a)
$log\, 2$
$\frac{32}{3}$
$\frac{32}{3}$
$\frac{1}{2}$
(b)
$2$
$16$
$\frac{32}{3}$
$2$
(c)
$\frac{1}{2}$
$\frac{4}{3}$
$\frac{4}{3}$
$2$
(d)
$log\,2$
$\frac{32}{3}$
$\frac{16}{3}$
$\frac{1}{2}$
P | Q | R | S | |
---|---|---|---|---|
(a) | $log\, 2$ | $\frac{32}{3}$ | $\frac{32}{3}$ | $\frac{1}{2}$ |
(b) | $2$ | $16$ | $\frac{32}{3}$ | $2$ |
(c) | $\frac{1}{2}$ | $\frac{4}{3}$ | $\frac{4}{3}$ | $2$ |
(d) | $log\,2$ | $\frac{32}{3}$ | $\frac{16}{3}$ | $\frac{1}{2}$ |
Application of Integrals
Solution: