Q.
Fill in the blanks.
(i) $\frac{\left(1-i\right)}{1-i^{3}}$ equal to P.
(ii) If $\left|\frac{z-2}{z+2}\right|=\frac{\pi}{6}$ , then the locus of $z$ is Q.
(iii) The sum of the series $i +i^{2} + i^{3} + ...$ upto $1000$ terms is R .
(iv) If $|z|=4$ and arg $(z)=\frac{5\pi}{6}$, then z = S.
$P$
$Q$
$R$
$S$
(a)
$2$ $\,$
Parabola $\,$
$-1$ $\,$
$2+2\sqrt{3}\,i$ $\,$
(b)
$-2$ $\,$
Circle $\,$
$0$ $\,$
$-2\sqrt{3}+2i$ $\,$
(c)
$2$ $\,$
Circle $\,$
$1$ $\,$
$2-\sqrt{3}\,i$ $\,$
(d)
$-2$ $\,$
Parabola $\,$
$2$ $\,$
$2-2\sqrt{3}\,i$ $\,$
$P$ | $Q$ | $R$ | $S$ | |
---|---|---|---|---|
(a) | $2$ $\,$ | Parabola $\,$ | $-1$ $\,$ | $2+2\sqrt{3}\,i$ $\,$ |
(b) | $-2$ $\,$ | Circle $\,$ | $0$ $\,$ | $-2\sqrt{3}+2i$ $\,$ |
(c) | $2$ $\,$ | Circle $\,$ | $1$ $\,$ | $2-\sqrt{3}\,i$ $\,$ |
(d) | $-2$ $\,$ | Parabola $\,$ | $2$ $\,$ | $2-2\sqrt{3}\,i$ $\,$ |
Complex Numbers and Quadratic Equations
Solution: