Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Figure shows a rectangular copper plate with is centre of mass at the origin $ O $ and side $ AB = 2BC = 2 m $ . If a quarter part of the plate (shown as shaded) is removed, the centre of mass of the remaining plate would lie atPhysics Question Image

AMUAMU 2018System of Particles and Rotational Motion

Solution:

Given,
$AB = 2BC = 2m$
image
$\therefore BC=1\,m$
$\sigma$ be the mass per unit area
$m_{1}=m_{2}=m_{3}=(1\times0.5) \sigma=0.5\sigma$
If $G\left(\bar{x}, \bar{y}\right)$ be the position of centre of mass, then
$\bar{x}=\frac{m_{1}x_{1}+m_{2}x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}$
$=\frac{0.5\sigma\times0.5+0.5\sigma\times\left(-0.5\right)+0.5\sigma\times0.5}{0.5\sigma+0.5\sigma+0.5\sigma}$
$=\frac{0.5\sigma\times0.5}{3\times0.5\sigma}=\frac{1}{6}m$
$\bar{y}=\frac{m_{1}y_{1}+m_{2}y_{2}+m_{3}y_{3}}{m_{1}+m_{2}+m_{3}}$
$=\frac{0.5\sigma\times0.25+0.5\sigma\times0.25+0.5\sigma\times\left(-0.25\right)}{0.5\sigma+0.5\sigma+0.5\sigma}$
$=\frac{0.5\sigma\times0.25}{3\times0.5\sigma}=\frac{1}{12}m$