Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
f (x)= displaystyle limn→∞ ((x-1)2n-1/(x-1)2n+1) is discontinuous at
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $f \left(x\right)=\displaystyle\lim_{n\to\infty} \frac{\left(x-1\right)^{2n}-1}{\left(x-1\right)^{2n}+1}$ is discontinuous at
Continuity and Differentiability
A
$x = 0$ only
10%
B
$x = 2$ only
20%
C
$x = 0$ and $2$
55%
D
none of these
15%
Solution:
$f \left(x\right)=\lim\limits_{n\to\infty} \frac{\left[\left(x-1\right)^{2}\right]^{n}-1}{\left[\left(x-1\right)^{2}\right]^{n}+1}$
$=\lim\limits_{n\to\infty} \frac{1-\frac{1}{\left[\left(x-1\right)^{2}\right]^{n}}}{1+\frac{1}{\left[\left(x-1\right)^{2}\right]^{n}}}$
$ = \begin{cases} -1 , & \quad 0 \le\,\left(x-1\right)^{2}<\,1 \\ 0, & \quad (x-1)^{2}=1 \\ 1, & \quad (x-1)^{2}>\,1 \end{cases} $
$ = \begin{cases} 1 , & \quad x <\,0 \\ 0, & \quad x=0 \\ -1, & \quad 0<\,x<\,2\\ 0 , & \quad x =2 \\ 1, & \quad x >\,2 \end{cases} $
Thus, $f (x)$ is discontinuous at $x = 0,2$