Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Express $\left(\frac{1}{3}+3i\right)^{3}$ in the form of $a +ib$.

Complex Numbers and Quadratic Equations

Solution:

$\left(\frac{1}{3}+3i\right)^{3} =\left(\frac{1}{3}\right)^{3}+3\left(\frac{1}{3}\right)^{2} \left(3i\right)+3\left(\frac{1}{3}\right)\left(3i\right)^{2}+\left(3i\right)^{3}$
$=\frac{1}{27}+i+9\left(-1\right)+27\left(-i\right)$
$=\frac{1}{27}-9-26i$
$=\frac{1-243}{27}-26i$
$=\frac{-242}{27}-26i$