Thank you for reporting, we will resolve it shortly
Q.
Evaluate: $\int 2^{2^{2^{x}}} 2^{2^{x}} 2^{x} d x$
Integrals
Solution:
Let $I =\int 2^{2^{2^{x}}} 2^{2^{x}} 2^{x} d x$
Let $2^{2^{2^{x}}}=t \Rightarrow 2^{2^{2^{x}}} 2^{2^{x}} 2^{x}(\log 2)^{3} d x=d t$
$\Rightarrow I =\int \frac{1}{(\log 2)^{3}} dt$
$=\frac{1}{(\log 2)^{3}} t + C$
$=\frac{1}{(\log 2)^{3}} 2^{2^{2^{ x }}}+ C$