Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Evaluate $\displaystyle \lim_{x \to 0}$$\frac{sin\,4x}{sin\,2x}=$

Limits and Derivatives

Solution:

$\displaystyle \lim_{x \to 0}$$\frac{sin\,4x}{sin\,2x}$
$=\displaystyle \lim_{x \to 0}$$\left[\frac{sin\,4x}{4x}\cdot\frac{2x}{sin\,2x}\cdot2\right]$
$=2 \cdot \displaystyle \lim_{x \to 0}$$\left\{\left[\frac{sin\,4x}{4x}\right] \cdot \left[\frac{sin\,2x}{2x}\right]\right\}$
$=2\cdot \displaystyle \lim_{4x \to 0}$$\left[\frac{sin\,4x}{4x}\right] \cdot \displaystyle \lim_{2x \to 0}$$\left[\frac{sin\,2x}{2x}\right]$
$=2 \cdot 1 \cdot 1=2$ (as $x \to 0$, $4x \to 0$ and $2x \to 0$)