Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Evaluate $\displaystyle\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e+\frac{1}{2} e x}{x^{2}}$.

Limits and Derivatives

Solution:

$(1+x)^{1 / x}=e^{\frac{1}{x} \log (1+x)}=e^{\frac{1}{x}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots\right)}$
$=e^{1-\frac{x}{2}+\frac{x^{2}}{3}-\ldots .}=e \cdot e^{-\frac{x}{2}+\frac{x^{2}}{3}-\ldots}$
$=e\left[1+\left(-\frac{x}{2}+\frac{x^{2}}{3}-\ldots .\right)+\frac{1}{2 !}\left(-\frac{x}{2}+\frac{x^{2}}{3} \ldots .\right)^{2}+\ldots .\right]$
$=e\left[1-\frac{x}{2}+\frac{11}{24} x^{2}-\ldots . .\right]$
Hence, $\displaystyle\lim _{x \rightarrow 0} \frac{(1+x)^{1 / x}-e+\frac{1}{2} e x}{x^{2}}=\frac{11 e}{24}$