Thank you for reporting, we will resolve it shortly
Q.
Equation of the pair of tangents drawn from the origin to the circle $ {{x}^{2}}+{{y}^{2}}+2\,g\,x+2\,fy+c=0 $ is:
Bihar CECEBihar CECE 2002
Solution:
If a tangents drawn through a point $ ({{x}_{1}},{{y}_{1}}) $ circles S, then the equation of pair of tangents is $ S{{S}_{1}}={{T}^{2}}. $ Let
$ S={{x}^{2}}+{{y}^{2}}+2\,gx+2\,fy+c=0 $
The tangents are drawn through the origin (0, 0) to the circle is
$ S{{S}_{1}}={{T}^{2}} $
$ \Rightarrow $ $ ({{x}^{2}}+{{y}^{2}}+2\,gx+2\,fy+c)c $
$ ={{(gx+fy+c)}^{2}} $
$ \Rightarrow $ $ c({{x}^{2}}+{{y}^{2}})={{(gx+fy)}^{2}} $