Thank you for reporting, we will resolve it shortly
Q.
Equation of the ellipse with eccentricity $\frac{1}{2}$ and foci at $(\pm 1,0)$, is
Conic Sections
Solution:
Given that, $e=\frac{1}{2}$ and $(\pm a e, 0)=(\pm 1,0)$
$\Rightarrow a e=1 \Rightarrow a=2$
Now, $ b^2=a^2\left(1-e^2\right)$
$\Rightarrow b^2=4\left(1-\frac{1}{4}\right) \Rightarrow b^2=3$
Hence, equation of ellipse is $\frac{x^2}{4}+\frac{y^2}{3}=1$.