Thank you for reporting, we will resolve it shortly
Q.
Equation of the ellipse whose axes are the axes of coordinates and which passes through the point (-3,1) and has eccentricity $\sqrt{\frac{2}{5}}$ is
AIEEEAIEEE 2011Conic Sections
Solution:
Let the equation of the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Which will pass through (-3,1) if $\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$
and eccentricity $=e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{\frac{2}{5}}$
$\Rightarrow \frac{2}{5}=1-\frac{b^{2}}{a^{2}}$
$\Rightarrow \frac{b^{2}}{a^{2}}=\frac{3}{5}$
$\Rightarrow b^{2}=\frac{3}{5} a^{2}$
Thus $\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$
$\frac{9}{a^{2}}+\frac{5}{3 a^{2}}=1$
$\Rightarrow 27+5=3 a^{2}=32$
$\Rightarrow a^{2}=\frac{32}{3}, b^{2}=\frac{3}{5} \times \frac{32}{3}=\frac{32}{5}$
Required equation of the ellipse is $3 x^{2}+5 y^{2}=32$