Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Equation of the ellipse whose axes are the axes of coordinates and which passes through the point (-3,1) and has eccentricity $\sqrt{\frac{2}{5}}$ is

AIEEEAIEEE 2011Conic Sections

Solution:

Let the equation of the ellipse be $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
Which will pass through (-3,1) if $\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$
and eccentricity $=e=\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{\frac{2}{5}}$
$\Rightarrow \frac{2}{5}=1-\frac{b^{2}}{a^{2}}$
$\Rightarrow \frac{b^{2}}{a^{2}}=\frac{3}{5}$
$\Rightarrow b^{2}=\frac{3}{5} a^{2}$
Thus $\frac{9}{a^{2}}+\frac{1}{b^{2}}=1$
$\frac{9}{a^{2}}+\frac{5}{3 a^{2}}=1$
$\Rightarrow 27+5=3 a^{2}=32$
$\Rightarrow a^{2}=\frac{32}{3}, b^{2}=\frac{3}{5} \times \frac{32}{3}=\frac{32}{5}$
Required equation of the ellipse is $3 x^{2}+5 y^{2}=32$