Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Equation of a tangent to the parabola $y^2=12 x$ which make an angle of $45^{\circ}$ with line $y=3 x+77$ is

Conic Sections

Solution:

Let the equation of tangent is $y=m x+\frac{a}{m}$
$y=m x+\frac{3}{m} $
$\tan 45^{\circ}=\left|\frac{m-3}{1+3 m}\right| $
$\Rightarrow \frac{m-3}{1+3 m}=\pm 1 $
$\Rightarrow 4 m-2=0 \& 2 m+4=0$
$\Rightarrow m=\frac{1}{2} \&-2$
$\therefore$ equation of tangents
$y=-2 x-\frac{3}{2} \& y=\frac{1}{2} x+6 $
$2 y=-4 x-3 \& 2 y=x+12$