Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Chemistry
Equal volumes of three acid solutions of pH 3, 4 and 5 are mixed in a vessel. What will be the H+ ion concentration in the mixture?
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Equal volumes of three acid solutions of pH $3, 4$ and $5$ are mixed in a vessel. What will be the $ H^+ $ ion concentration in the mixture?
AIPMT
AIPMT 2008
Equilibrium
A
$ 1.11 \times 10^{-4}M $
9%
B
$ 3.7 \times 10^{-4}M $
58%
C
$ 3.7 \times 10^{-3}M $
14%
D
$ 1.11 \times 10^{-3}M $
19%
Solution:
Let the volume of each acid $=V$
$pH$ of first, second and third acids $=3,4$ and $5$ respectively
$\left[H^{+}\right]$of first acid $\left(M_{1}\right)=1 \times 10^{-3}\left[\therefore H^{+}=1 \times 10^{-p H}\right]$
$\left[H^{+}\right]$of second acid $\left(M_{2}\right)=1 \times 10^{-4}$
$\left[H^{+}\right]$of third acid $\left(M_{3}\right)=1 \times 10^{-5}$
Total $\left[ H ^{+}\right]$concentrated of mixture
$(M)=\frac{M_{1} V_{1}+M_{2} V_{2}+M_{3} V_{3}}{V_{1}+V_{2}+V_{3}} $
$=\frac{1 \times 10^{-3} \times V+1 \times 10^{-4} \times V+1 \times 10^{-5} \times V}{V+V+V} $
$=\frac{1 \times 10^{-3} \times V(1+0.1+0.01)}{3 V}$
$=\frac{1.11 \times 10^{-3}}{3}=3.7 \times 10^{-4} M$