Q. Electrons of mass $m$ with de Broglie wavelength $\lambda $ fall on the target in an $X$ -ray tube. The cut-off wavelength $\left(\lambda_{0}\right)$ of the emitted $X$ -ray is
NTA AbhyasNTA Abhyas 2022
Solution:
De Broglie wavelength $=\frac{h}{p}\Rightarrow p=\frac{h}{\lambda }$ ......(i)
$K.E$ of electrons $E=\frac{p^{2}}{2 m}$ ....(ii)
From (i) & (ii),
$E=\frac{h^{2}}{\lambda ^{2} \times 2 m}$
$\therefore $ The cut-off wave length $\lambda _{0}=\frac{h c}{E}=\frac{h c}{h^{2}}\times \lambda ^{2}\times 2m=\frac{2 mc \lambda ^{2}}{h}$
$K.E$ of electrons $E=\frac{p^{2}}{2 m}$ ....(ii)
From (i) & (ii),
$E=\frac{h^{2}}{\lambda ^{2} \times 2 m}$
$\therefore $ The cut-off wave length $\lambda _{0}=\frac{h c}{E}=\frac{h c}{h^{2}}\times \lambda ^{2}\times 2m=\frac{2 mc \lambda ^{2}}{h}$