Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Electron in hydrogen atom first jumps from third excited state to second excited state and then from second excited to the first excited state. The ratio of the wavelength $\lambda_{1} : \lambda_{2}$emitted in the two cases is

VITEEEVITEEE 2018

Solution:

Here, for wavelength $\lambda_{1}$
$n_{1}=4$ and $n_{2}=3$
and for $\lambda_{2}, n_{1}=3$ and $n_{2}=2$
We have $\frac{h c}{\lambda}=-13.6\left[\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\right]$
so, for $\lambda_{1}$
$\Rightarrow \frac{h c}{\lambda_{1}}=-13.6\left[\frac{1}{(4)^{2}}-\frac{1}{(3)^{2}}\right]$
$\frac{h c}{\lambda_{1}}=-13.6\left[\frac{7}{144}\right] \ldots$ (i)
simiarly, for $\lambda_{2} $
$\Rightarrow \frac{h c}{\lambda_{1}}=-13.6\left[\frac{1}{(3)^{2}}-\frac{1}{(2)^{2}}\right]$
$\frac{h c}{\lambda_{1}}=-13.6\left[\frac{5}{36}\right] \ldots$ (ii)
Hence, from Eqs. (i) and (ii), we get
$\therefore \frac{\lambda_{1}}{\lambda_{2}}=\frac{-13.6\left[\frac{7}{144}\right]}{-13.6\left[\frac{5}{36}\right]}=\frac{20}{7}$