Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Eight drops of water of 0.6 mm radius each merge to form one big drop. If the surface tension of water is $ 0.072\text{ }N{{m}^{-1}}, $ the energy dissipated in the process is

EAMCETEAMCET 2009

Solution:

Volume of 8 drops of water = Volume of big drop of water Given that, Radius of small drop r = 0.6 mm $ \therefore $ $ 8\times \frac{4}{3}\pi {{(0.6)}^{3}}=\frac{4}{3}\pi {{R}^{3}} $ or $ 2\times 0.6=R $ or $ R=1.2\,mm $ where R is the radius of big drop. Change in surface area $ \Delta A=4\pi {{r}^{2}}\times 8-4\pi {{R}^{2}} $ $ =4\pi [{{(0.6)}^{2}}\times 8-{{(1.2)}^{2}}]\times {{10}^{-6}} $ $ =4\pi (0.36\times 8-1.44)\times {{10}^{-6}} $ $ =4\pi (2.88-1.44)\times {{10}^{-6}} $ $ \Delta A=4\pi (1.44)\times {{10}^{-6}}{{m}^{2}} $ Energy dissipated in this process $ E=T\times \Delta A $ $ =0.072\times 4\pi \times 1.44\times {{10}^{-6}} $ $ =28.8\times {{10}^{-2}}\times \pi \times 1.44\times {{10}^{-6}} $ $ E=4.15\pi \times {{10}^{-7}}J $