Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\mathrm{E}_{\text {cell }}^0$ for reaction, $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{O}_2(\mathrm{~s})+6 \mathrm{H}_2 \mathrm{O}+4 \mathrm{OH}^{-} \rightarrow 4\left[\mathrm{Al}(\mathrm{OH})_4\right]^{-}$is $2.73 \mathrm{~V}$. If $\mathrm{G}_{\mathrm{f}}^0$ of $\mathrm{OH}^{-}$and $\mathrm{H}_2 \mathrm{O}$ are $-157 \mathrm{~kJ} \mathrm{~mole}^{-1}$ and $-237.2 \mathrm{~kJ} \mathrm{~mol}^{-1}$ determine $\mathrm{G}_{\mathrm{f}}^0$ for $\left[\mathrm{Al}(\mathrm{OH})_4\right]^{-}$

NTA AbhyasNTA Abhyas 2020Electrochemistry

Solution:

Solution
For given cell reaction,
$\Delta G ^{ \circ}=- n E ^{\circ} F$
So, $\Delta G ^{ \circ}=-12 \times 2.73 \times 96500\, J$
$=-3.1613 \times 10^{3} kJ$
Now for given reactions,
$\Delta \mathrm{G}^0=4 \times \mathrm{G}_{\mathrm{f}}^{\mathrm{o}}\left[\mathrm{Al}(\mathrm{OH})_4\right]^{-}-6 \times \mathrm{G}_{\mathrm{f}}^0\left[\mathrm{H}_2 \mathrm{O}\right]-4 \times \mathrm{G}_{\mathrm{f}}^0\left[\mathrm{OH}^{-}\right]$
(Also note that $\mathrm{G}_{\mathrm{f}}^{\mathrm{o}}$ for elements is zero)
$ -3.1613 \times 10^3=4 \mathrm{G}_{\mathrm{f}}^0\left[\mathrm{Al}(\mathrm{OH})_4\right]^{-}-6 \times(-237.2)-4 \times(-157) $
So, $\mathrm{G}_{\mathrm{f}}^{\mathrm{O}}\left[\mathrm{Al}(\mathrm{OH})_4\right]^{-}=-1303 \mathrm{~kJ}$