Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Dividing the interval $[0,6]$ into $6$ equal parts and by using trapezoidal rule the value of $\int\limits_{0}^{6} x^{3} d x$ is approximately :

EAMCETEAMCET 2006

Solution:

$x$ 0 1 2 3 4 5 6
$f (x)$ 0 1 8 27 64 125 216

By trapezoidal rule
$\int\limits_{0}^{6} x^{3} d x=\frac{h}{2}\left\{y_{0}+y_{6}+2\left(y_{1}+y_{2}\right.\right.\left. \left.+y_{3}+y_{4}+y_{5}\right)\right\} $
$= \frac{1}{2}\{0+216+2(1+8+27+64+125)\} $
$= \frac{1}{2}\{216+450\}=\frac{666}{2}$
$= 333$