Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{\left(\pi - 2x\right)^{3}} $ equals :

JEE MainJEE Main 2017Limits and Derivatives

Solution:

$\displaystyle\lim_{x \to \frac{\pi}{2}} \frac{\cot x - \cos x}{\left(\pi - 2x\right)^{3}} $
Put, $\frac{\pi}{2}-x = t$
$\displaystyle\lim_{t \to 0}\frac{\tan \,t-\sin \,t}{8t^{3}}$
$=\displaystyle\lim_{t \to 0}\frac{\sin t\cdot 2 \sin^{2} \frac{t}{2}}{8t^{3}}$
$ = \frac{1}{16}.$