Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim_{x \to \infty} \frac{ (2x -3)(3x -4)}{(4x - 5)(5x - 6)}$ is equal to:

Limits and Derivatives

Solution:

Let $f(x) = \frac{ (2x -3)(3x -4)}{(4x - 5)(5x - 6)}$
we have to find $\displaystyle\lim_{x \to \infty} f(x)$
Put $ x = \frac{1}{h},$ if $x \to \infty ,h \to 0$ then
$\displaystyle\lim_{x \to \infty} f(x) = \displaystyle\lim_{h \to 0} \frac{ (2x -3h)(3x -4h)}{(4x - 5h)(5x - 6h)}$
$ = \frac{6}{20} = \frac{3}{10}$