Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle \lim_{x \to -\infty}$$\frac{2x-1}{\sqrt{x^{2}+2x+1}}=$

Limits and Derivatives

Solution:

$\displaystyle \lim_{x \to -\infty}$$\frac{2x-1}{\sqrt{x^{2}+2x+1}}$
Put $x =-1/y$ as $x \to -\infty$, $y \to 0$
$=\displaystyle \lim_{y \to 0}$$\frac{-\frac{2}{y}-1}{\sqrt{\frac{1}{y^{2}}-\frac{2}{y}+1}}$
$=\displaystyle \lim_{y \to 0}$$\frac{-2-y}{\sqrt{1-2y+y^{2}}}$
$=-2$.