Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
displaystyle lim x arrow 1 (√1- cos 2(x-1)/x-1)
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. $\displaystyle\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
Limits and Derivatives
A
exists and it equals $\sqrt{2}$
B
exists and it equals $-\sqrt{2}$
C
Does not exist because $(x-1) \rightarrow 0$
D
Does not exist because left hand limit is not equal to right hand limit
Solution:
$\displaystyle\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$
$=\displaystyle\lim _{x \rightarrow 1} \frac{\sqrt{2 \sin ^{2}(x-1)}}{x-1}$
$=\displaystyle\lim _{x \rightarrow 1} \frac{\sqrt{2}|\sin (x-1)|}{(x-1)}$
$LHL =\displaystyle\lim _{x \rightarrow 1^{-}} \frac{\sqrt{2}|\sin (x-1)|}{(x-1)}$
$=\displaystyle\lim _{h \rightarrow 0}-\frac{\sqrt{2}|\sin (1-h-1)|}{(1-h-1)} $
$=\displaystyle\lim _{h \rightarrow 0} \frac{\sqrt{2}|-\sin h|}{-h}$
$=-\sqrt{2} \displaystyle\lim _{h \rightarrow 0} \frac{\sin h}{h} $
$=-\sqrt{2} \cdot 1=-\sqrt{2} $
$RHL =\displaystyle\lim _{x \rightarrow 1^{+}} \frac{\sqrt{2}|\sin (x-1)|}{(x-1)}$
$=\displaystyle\lim _{h \rightarrow 0} \frac{\sqrt{2}|\sin (1+h-1)|}{(1+h-1)}$
$=\displaystyle\lim _{h \rightarrow 0} \frac{\sqrt{2}|\sin h|}{h}$
$=\sqrt{2} \displaystyle\lim _{h \rightarrow 0} \frac{\sin h}{h}$
$=\sqrt{2} \cdot 1=\sqrt{2}$
Since LHL $\neq$ RHL,
$\therefore \displaystyle\lim _{x \rightarrow 1} \frac{\sqrt{1-\cos 2(x-1)}}{x-1}$ does not exist.