Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$ is equal to

KEAMKEAM 2019

Solution:

$\displaystyle\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2} x\right)}{x^{2}}$
$=\displaystyle\lim _{x \rightarrow 0}\left\{\frac{\cos \left(\pi \cos ^{2} x\right) \cdot \pi \cdot 2 \cos x(-\sin x)}{2 x}\right\}$ (using $L^{'}$ Hopitals, Rule)
$=\displaystyle\lim _{x \rightarrow 0} \pi \cos \left(\pi \cos ^{2} x\right) \cdot \cos x \cdot\left(\frac{-\sin x}{x}\right)$
$=\pi(-1) . 1 .(-1)=\pi$