Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. $\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}+2 \cos x-4}{x^{4}}$ is equal to

Limits and Derivatives

Solution:

$\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}+2 \cos x-4}{x^{4}}$ $\left(\frac{0}{0}\right.$ form $)$
$=\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 \sin x}{4 x^{3}}$ $\left(\frac{0}{0}\right.$ form $)$
$=\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2 \cos x}{12 x^{2}}$ $\left(\frac{0}{0}\right.$ form $)$
$=\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}+2 \sin x}{24 x}$ $\left(\frac{0}{0}\right.$ form $)$
$=\displaystyle\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}+2 \cos x}{24}$ $=\frac{4}{24}=\frac{1}{6}$